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This paper presents an easily implemented test of the assumption of a normally

distributed error term for the ordered probit model.  As this assumption is the central
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1. Introduction

 Despite the growing number of applications, the literature does not include a test of the

normality assumption for the ordered probit model.  As Bera, Jarque and Lee (1984), hereafter BJL,

point out, the validity of the normality assumption is more important in limited dependent variables

models than in the usual regression model as, if the assumption does not hold, maximum likelihood

estimation will not, in general, yield consistent parameter estimates.  The assumption is also the central

maintained hypothesis in any statistical inference based on the parameter estimates.  In addition,

normality of the error term is crucial to the interpretation of the effects of changes in the explanatory

variables as these effects are usually expressed in terms of changes in the probabilities of each of the

outcomes.1

 In this paper I extend the work of BJL and derive a Lagrange multiplier, hereafter LM, test of the

normality assumption for the ordered probit model.  The test is easily implemented and should also

serve as a general specification test of the ordered probit model.  I examine the properties of the test in a

small Monte Carlo experiment and find that, while the actual size of the test may exceed its nominal size

somewhat in small samples, the test has good power properties, at least against the class of alternatives

considered.

2. A Test for Normality

 Let  be the dependent variable of interest and assume where  is a –vector ofC C œ B  B 53 3
‡ ‡ w

3 3 3" %

exogenous variables   is a –vector of parameters, and is a zero-mean error term, distributedß 5" %3

identically and independently across  with distribution function  having parameters .  Rather3 J Ð † à Ñ) )

than observe , all that is known is which of  intervals, forming a partition of the real line, containsC 7‡
3

C Þ ∞ œ    á   œ ∞‡
3 ! " # 7" 7  Define  and letα α α α α

= œ
"  C 
!3ß4

4" 43
‡œ  if 

otherwise
α α

1For a graphical exposition of the ordered probit model see Becker and Kennedy (1992) who also discuss the pitfalls and
subtlties in calculating and interpreting these probabilities.
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for .  It follows that   The log4 œ "ßá ß7 T<Ö= œ "l B × œ JÐ  B à Ñ  JÐ  B à ÑÞ3ß4 3 4 3 4" 3
w wα " ) α " )

likelihood for a sample of  observations is8

_ α " ) α " ) α " )Ð ß ß Ñ œ = 691 J Ð  B à Ñ  JÐ  B à Ñ Þ
3 œ "4 œ "

8 7  ‘3ß4 4 3 4" 3
w w

The parameters  and  may be estimated consistently by the maximizers of thisα α α " )œ Ð ßá ß Ñ ß" 7"
w

function under suitable regularity conditions.2

 When is the standard normal distribution, , the model outlined above is the ordered probitJ F

model.  In this note I develop a test of the hypothesis that  is the standard normal distribution againstJ

the alternative that it is some other member of the Pearson family of distributions.  The Pearson family

has distribution functions which can be written as  whereJÐ?à - ß - ß - Ñ œ KÐ?ÑÎKÐ∞Ñ! " #

KÐ?Ñ œ / .> ;Ð>Ñ œ .>' '
∞
? ;Ð>Ñ - >

- - >- > and  (see BJL or Johnson and Kotz (1970) for details).  When"

! " #
#

- œ " - œ - œ ! J - œ "! " # ! and ,  is the standard normal distribution.  Because  is the normalization

imposed to identify the parameters of the ordered probit model, the null hypothesis to be tested here is

- œ - œ !" # .

 Defining , the log likelihood under the alternative hypothesis is2 œ  B3ß4 4 3
wα "

_ α "Ð ß ß - ß - ß - Ñ œ E E œ = 691 KÐ2 Ñ  KÐ2 Ñ  691KÐ∞Ñ! " # 3 3 3ß4 3ß4 3ß4"˜  ‘ ™
3 œ " 4 œ "

8 7

 where .  Evaluated at

the null values of , after imposing the normalization , the derivatives of  with- œ - œ ! - œ " E" # ! 3

respect to the parameters are

2See, for example,  Amemiya (1985).
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where ( ) is the standard normal density function and  is a standard normal random variable.9 † D

 It can be shown that3
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 In order to compute the test statistic define

3The results in Johnson and Kotz (1970) p81-83 and the recursion   for' '
+ +

, ,:" :" : :D ÐDÑ.D œ : D ÐDÑ.D  + Ð+Ñ  , Ð,Ñ9 9 9 9

+  , :   " Þ and  are used here
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The LM test statistic for the hypothesis that  is normally distributed may then be computed as%3

/ 0 B B 0œ N N     
3œ" 3œ" 3œ"

8 8 8

3 3

w "

w w
3 3

where  is a matrix consisting of the last two columns of an  dimensional identity matrix andN 5 7 "

all of the elements of  are evaluated at their ordered probit MLE values.  The proofs in the appendix toB3

BJL may be modified to show that, under the null hypothesis,  is asymptotically distributed as a / ;2

random variable with two degrees of freedom.

3. A Monte Carlo Experiment

 To examine the properties of the test I conduct a small Monte Carlo experiment.  The model is

specified as  with  distributed uniformly on , ,  and .  IC œ B  B Ò  "ß "Ó œ " œ  œ3
‡

3 3 3 " #" % " α α" "
$ $

perform 10000 replications for each of several distributions for  having zero mean and unit variance%3

and each of the sample sizes 250, 500, 750, and 1000   To examine the size of the test  is drawn fromÞ %3

an  distribution.  To examine the power of the test  is drawn from gamma distributions.RÐ!ß "Ñ %3
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 The gamma distribution is the member of the Pearson family generated by setting  with- œ !#

- Á !Þ - œ" " 3
"  Here  so that the density of  under the alternatives isÈ1

%

0 Ð?à Ñ œ ?    Ä ∞ œ Ä ! 0Ð?à Ñ%
1 1

> 1 1
1 1 1 1

È È È
1 1 1 1Ð? Ñ /

Ð Ñ "
"

"  Ð? ÑÈ È
 for .  Note that, as , c  so È

Ä Ð?ÑÞ œ #ß & "! Ð?Ñ9 1 9  I use and .   Figure 1 plots these three density functions and .  As the figure4

indicates,  becomes less skewed to the right as  increases and for  it is quite close to0 Ð?à Ñ œ "!% 1 1 1

9Ð?ÑÞ

 Tables 1 and 2 give the results of the Monte Carlo experiment.  Table 1 shows the estimated

means and MSEs of the parameter estimates for the sample size of 1000.  The results for the other

sample sizes are similar and not reported to save space.  The first row shows that when the assumption

4For and ,  was constructed as  with the  drawn from a  distribution1 % % 1œ #ß & "! œ  691 D  D YÐ!ß "Ñ Þ3 3 2 2
"

2œ"
È1

1 È
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of a normally distributed error is true the distributions of the ML estimates are centered on the

respective true values of the parameters.  The other three rows show that, as the deviation of the

distribution of the error term from normality increases, as measured by the decline in  (or, equivalently,1

the skewness of the distribution) so does both the bias and MSE of the ML estimates.  This is

particularly so for  and  with the result that the gap between them increases with the skewness ofα αs s" #

the distribution of the error term.  Estimated outcome probabilities and their derivatives with respect to

B will be accordingly biased.

Table 1: Mean Parameter Estimates and MSEs

 Distribution

of  Mean MSE Mean MSE Mean MSE

1.004 .005 -.333 .002 .335 .002

10 1.017 .005 -.267 .006 .412 .008

5 1.032 .006

" α α

%

9

s s s

Ð?Ñ

0 Ð?à Ñ

0 Ð?à Ñ

" #

3

%

% -.244 .010 .449 .015

2 1.091 .013 -.215 .016 .530 .0400 Ð?à Ñ%

 This table shows, for a sample size of 1000,  the estimated means and MSEs of the ML estimates
of the parameters in the Monte Carlo experiment described in the text. The true values are ," œ "
α α %" # 3

" "
$ $œ  œ and . The means and MSEs are estimated using 10000 replications for  having each

of the densities  and  for 10, 5, and 2.  The  case is equivalent to .9 1 1 9 1Ð?Ñ 0 Ð?à Ñ œ Ð?Ñ œ ∞%

 Table 2 shows the percentage of rejections for a 5% test of the hypothesis that the error term is

normally distributed for each of the sample sizes and each of the densities of the error term.  When %3

has a normal distribution this percentage is an estimate of the size of the test.  In the other cases the

percentage of rejections is an estimate of the power against that particular alternative.
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Table 2: Percentage of Rejections of Normality Hypothesis

Sample Density of 

Size 10 5 2

250 6.6 16.2 28.1 79.4

500 5.3 24.4 48.8 97.7

750 5.1 34.4 66.5 99.8

1000 5.0 43.7 78.5 100.0

%

9

3

Ð?Ñ 0 Ð?à Ñ 0 Ð?à Ñ 0 Ð?à Ñ% % %

 This table shows, for each of the indicated sample sizes, the percentage of rejections of the
hypothesis that  has a normal distribution using the test described in the text with an asymptotic%3
size of 5% for  having the densities  and  for 10, 5, and 2.  In the first case,% 9 1 13 Ð?Ñ 0 Ð?à Ñ œ%

which is equivalent to , this percentage estimates the size of the test, while in the others, it1 œ ∞
indicates the power against that particular deviation from the null.  In each case 10000 replications
were performed.

 Overall, conditional on the setup of the Monte Carlo experiment, the size and power properties

of the test appear to be quite good.  The size of the test may slightly exceed the nominal value in small

samples but rapidly approaches 5% as the sample size rises. The power of the test increases with both

the magnitude of the deviation from the null, as measured by the skewness of the distribution of the

error term, and with the sample size.  In the case of  having the density 2 , which is the furthest%3 0 Ð?à Ñ%

from the null of normality, the power is never less than 79% and reaches 100% for the 1000 observation

sample.

4. Conclusions

 This paper presents a simple and easily implemented test of the assumption of a normally

distributed error term for the ordered probit model.  As this assumption is the central maintained

hypothesis in all estimation and testing based on this model the test ought to serve as a key specification

test in the applied literature.  A small Monte Carlo experiment suggests that the test has good size and

power properties.
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