Hints and Answers

Chapter 6

6.2 Show that VWP and IIA together imply WP.

6.5 How would a “lexicographic dictatorship” work?

6.8 For (c), suppose it is. Find a set of profiles that leads to a contradiction. Justify your approach.

6.10 For (a), if \(x^* \gg 0 \) is a WEA, there must exist \(n \) prices \((p^*_1, \ldots, p^*_n) \) such that every \((x')^* \) maximizes agent \(i \)'s utility over their budget set. Look at these first-order conditions and remember that the Lagrangian multiplier for agent \(i \) will be equal to the marginal utility of income for agent \(i \) at the WEA, \(\partial v_i(p^*, p - e^i) / \partial y \). Next, note that \(W \) must be strictly concave. Thus, if we have some set of weights \(\alpha^i \) for \(i \in I \) and an \(n \)-vector of numbers \(\theta = (\theta_1, \ldots, \theta_n) \) such that \(\alpha^i \nabla u_i((x')^*) = \theta \) and \(x^* \) satisfies the constraints, then \(x^* \) maximizes \(W \) subject to the constraints. What if we choose the \(\alpha^i \) to be equal to the reciprocal of the marginal utility of income for agent \(i \) at the WEA? What could we use for the vector \(\theta \)? Pull the pieces together.

6.11 For (b), consider this three-person, three-alternative case due to Sen (1970a). First, let \(xP^1yP^1z, zP^2xP^2y, \) and \(zP^3xP^3y \). Determine the ranking of \(x \) versus \(z \) under the Borda rule. Next, let the preferences of 2 and 3 remain unchanged, but suppose those of 1 become \(x \rightarrow z \rightarrow y \). Now consider the same comparison between \(x \) and \(z \) and make your argument.

6.12 First, look at the proof of Arrow’s theorem for a definition of “decisiveness.” Why can’t \((x, y) \) and \((z, w) \) be the same pair? If \(x = z \), invoke \(U \) and suppose that \(xP^i y, wP^j x, \) and \(yP^i w \) for all \(i \). Use \(I^* \) and WP to show that transitivity is violated. If \(x, y, z, \) and \(w \) are all distinct, let \(xP^i y, zP^j w, \) and suppose that \(wP^i x \) and \(yP^i z \) for all \(i \). Take it from here.

6.14 For (b) and (c), see Exercise A2.10 for the necessary definition. For (e),

\[
E(w, y) = \left(\sum_{i=1}^{N} \frac{1}{N} \left(\frac{y_i}{\bar{y}} \right)^{\frac{\rho}{\mu}} \right)^{1/\rho}.
\]

6.15 No, no, no, yes.

6.16 No, yes.